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GEOMETRIC PROGRAMMING APPROACH IN THREE - STAGE  
SAMPLING DESIGN 
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ABSTRACT  
In this paper we have formulated the problem of allocation of sample sizes in three-stage sampling design as a convex 
programming problem with linear objective function and non linear constraints. A Geometric Programming technique is 
developed for the solution of the resulting mathematical programming problem. A numerical example is given for the 
illustration of computational details of the procedure. 
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1. INTRODUCTION  
In the three–stage sampling design the process of sub 
sampling can be carried to a third stage by sampling the 
subunits instead of enumerating them completely. For 
instance, in surveys to estimate crop production in India 
(see Sukhatme, 1947), the village is a convenient 
sampling unit. Within a village, only some of the fields 
growing the crop in question are selected, so that the 
field is a sub-unit. When a field is selected, only certain 
parts of it are cut for the determination of yield per acre; 
thus the sub unit itself is sampled. Here we have to find 
the optimal sample sizes n, m and k for all the three 
stages with the minimum cost.    
The use of three stage sampling designs generally 
specifies three stages of selection: primary sampling 
units (PSUs) at the first stage, sub samples from PSUs at 
second stage as a secondary sampling units (SSUs) units 
and again sub samples from SSUs at third stage as a 
tertiary sampling units (TSUs).The three stage sampling 
designs are well analyzed when two variable is 
measured. Different methods are available for obtaining 
the optimum allocation of sampling units to each stage.  
Geometric programming (GP) is very much connected 
with geometrical concepts because this method based on 
geometric inequality .The sums and products of positive 
numbers are important properties of GP. The degree of 
difficulties in GP plays very important roles in the 
solution of mathematical programming problems. The 
degree of difficulty of a GP problem is defined as: 
Degree of difficulty = total no. of terms –total no. of decision 
variables -1         

If the degree of difficulty of primal problem is zero, then 
unique dual feasible solution exists. If the problem has 
positive degree of difficulty, then the objective function 
can be maximized by finding the dual feasible region, 
and if there is negative degree of difficulty then 
inconsistency of the dual constraints may occur.    
Geometric programming (GP), a smooth, systematic and 
an effective non-linear programming method used for 
solving problems of sample surveys, engineering design 
that takes the form of convex programming. The convex 
programming problems occurring in Geometric 
Programming are generally represented by an 
exponential or power function. Duffin and Zener has 
done the work in the field of engineering design 
problems in the early 1960s, and further extended by 
Duffin et al. [2]. Engineering design problems was also 
solved by Shiang [5] and Shaojian et.al [3] with the help 
of GP. Davis and Rudolph [7] applied GP to optimal 
allocation of integrated samples in quality control. 
Ahmed and Charles [15] applied geometric 
programming to optimum allocation problems in 
multivariate double sampling. Recently many authors 
have done the work on the Geometric Programming and 
multi-objective Geometric Programming in different 
directions. Some of them are: Ojha and Biswal [11] has 
worked on Posynomial Geometric Programming 
Problems with Multiple Parameter.  Ojha and Das [13] as 
has done the work on multi-objective Geometric 
Programming problem being cost coefficients as 
continuous function with weighted mean. Verma [9], 
Islam [12] developed fuzzy geometric programming 
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technique to solve Multi-Objective Geometric 
Programming problem. Islam and Roy [10] discussed the 
Modified Geometric Programming problem and its 
applications. Maqbool et al. [14] has discussed the 
Geometric Programming Approach to Optimum 
Allocation in Multivariate Two-stage Sampling Design.  
We have extended the Geometric Programming 
Approach of Two- stage sampling design into the Three–
stage sampling design.   
The presentation of the paper is as follows: The 
formulation of an allocation problem in a three-stage 
sampling design is discussed in section 2 and the 
solution procedure for solving above formulated 
problem with geometric programming approach is 
discussed in section 3. The illustrative numerical 
example with hypothetical data is then presented in 
section 4 and finally some comments and conclusions 
which are drawn from the discussion are given in 
section 5. 
 
2.  STATEMENT OF THE PROBLEM: 
Let us consider the population consists of NMK elements 
grouped into N first-stage units of M second-stage units 
and K third stage units each. Let n, m and k is the 
corresponding sample sizes selected with equal 
probability and without replacement at each stage. Let  
yiju  be the value obtained for uth  third-stage unit in the 

jth  second-stage unit drawn from the ith  primary unit.  
The relevant population means per third-stage unit are 
as follows: 
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In three- stage sampling the total cost function may be 
given by:          

nmkCnmCnCC 321 ++=                                       (2) 

c1  = The cost for thi  primary stage unit in the survey. 

c2 = The cost of enumerating the jth  character per 
element in the secondary sample units.  

=3C  The cost for finding theuth  character per element 
in the tertiary sample units 
C =   the total cost of enumerating all the p characters per 
TSu. 
Suppose that it is required to find the values of n, m and 
k so that the cost C is minimized, subject to the upper 
limits on the variances. If N, M and K are large, then 
from (1), the limits on the variances may be expressed 
as: 
 

<++
nmk
S

nm
S

n
S 2

3
2
2

2
1 v j j=1,…,p                                     (3)  

  
Where, v j  are the upper limits on the variances of 

various characters. Here sbj
2  is the variance among 

==
∑∑∑

NMK
Y

N

i

M

j

K

u
ijuy

==
∑∑

MK

M

j

K

u
iju

i

y
Y

)1(

)( 2

2
3 −

−
=
∑∑∑

KNM

N

i

M

j

K

u
ijijk Yy

S

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    1454 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

primary stage units means, swj
2 is the variance 

secondary stage units means, and skj
2   is the variance of 

the tertiary stage units means for jth  characteristic 
respectively. The problem therefore reduces to find the 
optimal values of sample sizes n, m and k which are 
expressed   as:  
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3. FORMULATION OF THE PROBLEM BY USING 
GEOMETRIC PROGRAMMING APPROACH 
Posynomial functions are minimized in the Geometric 
programming (GP) technique subject to several 
constraints. Posynomial functions can be defined as 
polynomials in several variables with positive 
coefficients in all terms and the power to which the 
variables are raised can be any real numbers. The cost 
function and the variance constraint functions are in the 
form of posynomials. Geometric programming always 
transforms the primal problem of minimizing a 
“posynomial” subject to “posynomial” constraints to a 
dual problem of maximizing a function of the weights 
on each constraint. Generally constraints are less than 
strata, so the transformation simplifies the procedure. 
The mathematical form of problem (4) with the help of 
information given below can be expressed in the 
following way in equation (5) as: 
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In the above equations we have noticed that the 
objective function 5(i) is linear and the constraints 5 (ii) 
are nonlinear and the reduced two subscripts which in 
the standard GP (Primal) problem can be stated as: 
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The posynomial q is given as: 
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The number of posynomial terms in the function can be 
denoted by k, the number of variables is denoted by n 
and the exponents pij are real constants. The objective 

function ( )xC  and the constraint function ( )Xg  for our 
allocation problem that is given respectively in equation 
5(i) and 5(ii) have  k = 3  n = 3 
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(see Maqbool and Pirzada [8]). 
The dual form of Geometric Programming problem 
which is stated in (6) can be given as: 
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Where, wi ’s  are weights. 
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Following   Duffin et al. [2] and Woolsey and Swanson 
[4], the allocation problem 5(i) & 5(ii) will be solved in 
four steps as follows: 

Step 1:  For the Optimum value of the objective function, 
the objective function always takes the form:
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The objective function (i.e. Cost) for our  problem is:
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From equation 5(ii), we have 
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Where 1a  , 2a and 3a  are the constants of three terms in 

the thi  constraints, 1v , 2v and 3v  are normalizing 

variables and  1k , 2k and 3k  are normalized constants 

in the thi  constraints. 

Step 2: The equations that can be used for geometric 
program for the weights are given below: 

 

∑ sw' in the objective function=1                                (10) 

and for each primal variable  jx  given n variables and k 

terms 

( ) ( ) 0exp
1

=×∑
=

m

i
ji termthatinxononenttrmseachforw )11(  

In our case:  

1321 =++ www  (Normalizing condition, from equation 

8(ii))                                                                                     (12)  

   

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 








=−+++++
=+−++++
=++−+++

0100100
0010010
0001001

654321

654321

654321

wwwwww
wwwwww
wwwwww

       (13)     

 Orthogonality conditions are represented in equation 
(13). Combindly, these conditions are referred to as dual 
constraints. For more details see Duffin et al. [4]. Now 
after solving equation (13) we get: 
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Step 3: The terms which are used in the constraints to 
the optimal solution are always proportional to their 
weights. This can be expressed as: 
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Step 4: The primal variables can be obtained as: 
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Now from equation15 (ii), the normalizing condition is 

solved using above values of 1w , 2w  and 3w  in 
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equation (12), for obtaining the values of the variables, 
we have   
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equation (17), we have 
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Now the value of 2x is obtained from the above 

equation (16). 
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Again after solving equation (31) for 3x , we get  
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4. NUMERICAL ILLUSTRATION 
For the illustration of the potential use of the proposed 
geometric programming procedure, we have considered 
the following hypothetical data: 
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Now by using the above values in equation (22) we get: 
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  The normalized constraints for our problem are: 
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The above equation will give the following: 
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The constraint 24 (ii) is assumed to be  active ( if all the 
three constraints were active, then two of them will not 
be able for finding an optimal dual solution nor an 
optimal solution to the original problem). 

(Conditions for active and inactive constraints: At any 

feasible point thhthex constraint is said to be active 

if 0)(0)( >= xifinactiveandx hh δδ . In our case the 

constraint 24 (ii) is active because it satisfies the 
condition of active constraint. This can be explained as: 

After putting the value of   *
1x , *

2x and *
3x  in the 

equation 24 (ii) we get: 

1
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6945.17

5847.53
18.14
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Then 8296.161 =K  18.14, 2 =K  and  6945.173 =K  

On substituting the values   of  21321 ,,,, CCKKK  and 

3C  in equations (16), (17), (*), (**), (18), (19) and (20), we 

get the values of 21 , xx  and 3x  as: 

9740.311 =x ,  5847.532 =x  and 6543.843 =x . 

By rounding the above values we get: 

*
1x = 32, *

2x = 54 and   *
3x   = 85  

 The optimum values of the sample sizes can be obtained 
as:  
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 After putting the values of   *
1x , *

2x  and *
3x in equation 

23(i), we get the total cost as:  

C = 3210× + 543×  + 855.1 ×  =609.5    

The feasibility of the solution is shown with the help of 
above example. Thus the requirement of sample for 
primary stage units is 32, the total of secondary stage 
units in each primary stage units  

 nm = 54 and the tertiary stage unit within each 
secondary stage units giving us total of  

 nmk =85, elementary units for the sample. 

6. CONCLUSION 
In this paper we have discussed the optimum allocation 
in Three-stage sample surveys and provided an effective 
manual algorithm for solving an optimum allocation in 
multi-stage sample surveys by using Geometric 
programming. The algorithm of the solution procedure 
of Geometric Programming is very simple in comparison 
to the complex analytical techniques used in statistical 
literature. There may not be precise knowledge of 
parameters in the Geometric programming in real 
worlds due to insufficient information. The feasibility 
and effectiveness of the present approach has been 
illustrated by a hypothetical numerical example.  
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